Zusammenfassung
Ziel: Integration der MR-Phlebografie in ein umfassendes Konzept der MRT-Diagnostik bei
Verdacht auf Lungenembolie (LE). Untersuchung des Einflusses von Kontrastmittelmenge,
-bolusform und Verzögerungszeit sowie der Nachverarbeitung auf die diagnostische Qualität
von MR-Phlebografien. Material und Methode: Bei 48 konsekutiven stationären Patienten mit Verdacht auf Beinvenenthrombose (TVT)
oder LE wurde eine MR-Phlebografie nach einem der folgenden Protokolle durchgeführt:
I. nur MR-Phlebografie; Einmalgabe von 0,25 mmol/kg/Körpergewicht (KG) Gadopentat-Dimeglumin
(Gd-DTPA), zeitlich auf Kontrastierung der Beinvenen abgestimmt. II. MR-Angiografie
der Pulmonalarterien und MR-Phlebografie; zunächst MRT der Lungengefäße mit insgesamt
0,25 mmol/kg/KG Gd-DTPA, danach Umbau zur MR-Phlebografie. III. wie Protokoll II;
MR-Angiografie der Pulmonalarterien mit 0,125 mmol/kg/KG Gd-DTPA, danach MR-Phlebografie.
Bewertet wurden Signal-zu-Rausch-Verhältnis, Kontrast-zu-Rausch-Verhältnis, die Zahl
auswertbarer Gefäßsegmente und die Bildqualität. Referenz war eine konventionelle
beiderseitige Phlebografie. Ergebnisse: Alle MR-Phlebografien erreichten diagnostische Qualität bei unter 10 min Untersuchungsdauer.
Die MR-Phlebografie war häufiger durchführbar (48/48 vs. 43/48) und bildete das Beinvenensystem
vollständiger ab als die konventionelle Phlebografie (94 % der untersuchten Gefäßsegmente
vs. 83 % bei konventioneller Phlebografie). Die Sensitivität zur Diagnose der TVT
betrug 100 % und die Spezifität 92 %. Signifikante Unterschiede bestanden zwischen
Protokollen mit 0,125 mmol/kg (III) und 0,25 mmol/kg (I und II) Kontrastmitteldosis,
während ein genaueres Timing des Kontrastmittelbolus (I vs. II) die Untersuchungsqualität
nicht verbesserte. Schlussfolgerung: Die Diagnostik an Pulmonalarterien und tiefen Beinvenen bei V. a. LE kann in der
MRT problemlos in einem Untersuchungsgang kombiniert werden. Mit einer Kontrastmitteldosis
von 0,25 mmol/kg/KG liefert die MR-Phlebografie zuverlässige Ergebnisse und bildet
das Venensystem bei mindestens gleicher diagnostischer Sicherheit vollständiger als
die konventionelle Phlebografie ab.
Abstract
Purpose: Integration of MR venography in a comprehensive MR imaging protocol in patients with
suspected pulmonary embolism (PE) and evaluation of contrast media dosage, timing
and postprocessing for diagnostic accuracy. Materials and Methods: Forty-eight consecutive inpatients with suspected PE or deep vein thrombosis were
examined by MR venography according to one of the following protocols: protocol I:
MR venography only, 0.25 mmol/kg body weight (BW) Gadopentate dimeglumine (Gd-DTPA)
as single dose, bolus timing; protocol II: MR angiography of pulmonary arteries with
a cumulative dosage of 0.25 mmol/kg contrast media, modification of coil setting for
MR venography without further contrast media application; protocol III: as protocol
II but with 0.125 mmol/kg BW, followed by MR venography. Signal-to-noise ratio, contrast-to-noise
ratio, number of definable vascular segments and image quality were evaluated. The
results were compared to conventional bilateral venography. Results: All MR venography examinations were of diagnostic quality and the examination time
was below 10 min. MR venography could be performed in all 48 patients compared to
43 of 48 patients for conventional venography. Significantly more superficial and
deep veins of the leg could be visualized by MR venography (94 % compared to 83 %
for conventional venography). Sensitivity and specificity were 100 % and 92 %, respectively.
Quality differed significantly between 0.125 mmol/kg (protocol III) and 0.25 mmol/kg
Gd-DTPA (protocols I and II) while timing did not influence quality (protocol I vs.
II). Conclusion: An integrated MR diagnostic evaluation of pulmonary arteries and veins of the leg
is feasible in patients with suspected PE. MR venography with 0.25 mmol/kg Gd-DTPA
reliably depicts the venous system of the leg more completely than conventional venography
with at least equivalent diagnostic confidence.
Key words
Magnetic resonance (MR) - vascular studies - venography - veins - extremities - contrast
enhancement - embolism - pulmonary
Literatur
1
Turkstra F, Kuijer P M, van Beek E J. et al .
Diagnostic utility of ultrasonography of leg veins in patients suspected of having
pulmonary embolism.
Ann Intern Med.
1997;
126
775-781
2
Loud P A, Grossman Z D, Klippenstein D L. et al .
Combined CT venography and pulmonary angiography: a new diagnostic technique for suspected
thromboembolic disease.
Am J Roentgenol.
1998;
170
951-954
3
Cham M D, Yankelevitz D F, Shaham D. et al .
Deep venous thrombosis: detection by using indirect CT venography.
Radiology.
2000;
216
744-751
4
Loud P A, Katz D S, Bruce D A. et al .
Deep venous thrombosis with suspected pulmonary embolism: detection with combined
CT venography and pulmonary angiography.
Radiology.
2001;
219
498-502
5
Ghaye B, Dondelinger R F.
Non-traumatic thoracic emergencies: CT venography in an integrated diagnostic strategy
of acute pulmonary embolism and venous thrombosis.
Europ Radiol.
2002;
12
1906-1921
6
Ruehm S G, Goyen M, Debatin J F.
MR-Angiografie: erste Wahl bei der Abklärung des arteriellen Gefäßsystems.
Fortschr Röntgenstr.
2002;
174
551-556
7
Demaerel P, Marchal G, Wilms G. et al .
Gadodiamide injection at 0.1 and 0.3 mmol/kg body weight: a phase III double-blind,
parallel, randomized clinical investigation of known or suspected nervous system lesions
at 1.5 T.
Neuroradiology.
1994;
36
355-359
8
Harpur E S, Worah D, Hals P A. et al .
Preclinical safety assessment and pharmacokinetics of gadodiamide injection, a new
magnetic resonance imaging contrast agent.
Invest Radiol.
1993;
28
28-43
9
Svaland M G, Christensen T, Lundorf E.
Comparison of the safety of standard and triple dose gadodiamide injection in MR imaging
of the central nervous system: a double-blind study.
Acta Radiol.
1994;
35
369-399
10
Thurnher S A, Capelastegui A, Del Olmo F H. et al .
Safety and effectiveness of single- versus triple-dose gadodiamide injection- enhanced
MR angiography of the abdomen: a phase III double-blind multicenter study.
Radiology.
2001;
219
137-146
11
Ruehm S G, Wiesner W, Debatin J F.
Pelvic and lower extremity veins: contrast enhanced three-dimensional MR venograpy
with a dedicated vascular coil-Initial experience.
Radiology.
2000;
215
421-427
12
Fraser D GW, Moody A R, Davidson I R. et al .
Deep venous thrombosis: diagnosis by using venous enhanced subtracted peak arterial
MR venography versus conventional venography.
Radiology.
2003;
226
812-820
13
Matsuoka S, Uchiyama K, Shima H. et al .
Detectability of pulmonary perfusion defect and influence of breath holding on contrast-enhanced
thick-slice 2D and on 3D MR pulmonary perfusion images.
J Magn Reson Imaging.
2001;
14
580-585
14
Kluge A, Müller C, Hansel J. et al .
Real time MR with TrueFISP for the detection of acute pulmonary embolism: initial
clinical experience.
European Radiology 2004; 14: 709 - 718, DOI 10.1007/s00330-003-2164-5.
15
Rofsky N M, Weinreb J C, Bosniak M A. et al .
Renal lesion characterization with gadolinium-enhanced MR imaging: efficacy and safety
in patients with renal insufficiency.
Radiology.
1991;
180
85-89
16
Rominger M B, Kenney P J, Morgan D E. et al .
Gadolinium-enhanced MR imaging of renal masses.
Radiographics.
1992;
12
1097-1116
17
Kaufman J A, Geller S C, Waltman A C.
Renal insufficiency: gadopentetate dimeglumine as a radiographic contrast agent during
peripheral vascular interventional procedures.
Radiology.
1996;
198
579-581
18
Cochran S T, Bomyea K, Sayre J W.
Trends in adverse events after IV administration of contrast media.
Am J Roentgenol.
2001;
176
1385-1388
19
Lebowitz J A, Rofsky N M, Krinsky G A. et al .
Gadolinium-enhanced body MR venography with subtraction technique.
AJR Am J Roentgenol.
1997;
169
755-758
20
Müller C, Kopka L, Funke M. et al .
Diagnostik der Lungenembolie und zugrundeliegender Venenthrombosen in der Mehrzeilen-Spiral-CT.
Fortschr Röntgenstr.
2001;
173
528-535
21
Larsson E M, Sundén P, Olsson C G. et al .
MR Venography Using an Intravascular Contrast Agent: Results from a Multicenter Phase
2 Study of Dosage.
Am J Roentgenol.
2003;
180
227-232
22
Gillet J L, Perrin M, Cayman R.
Superficial venous thrombosis of the lower limbs: prospective analysis in 100 patients.
J Mal Vasc.
2001;
26
16-22
23
Blumenberg R M, Barton E, Gelfand M L. et al .
Occult deep venous thrombosis complicating superficial thrombophlebitis.
J Vasc Surg.
1998;
27
338-343
24
Laissy J P, Cinqualbre A, Loshkajian A. et al .
Assessment of deep venous thrombosis in the lower limbs and pelvis: MR venography
versus duplex Doppler sonography.
Am J Roentgenol.
1996;
167
971-975
25
Oudkerk M, van Beek E JR, Wielopolski P. et al .
Comparison of contrast-enhanced magnetic resonance angiography and conventional pulmonary
angiography for the diagnosis of pulmonary embolism: a prospective study.
Lancet.
2002;
359
1643-1647
26
Cleveland W S.
Robust locally weighted regression and smoothing scatterplots.
Journal of the American Statistical Association.
1979;
74
829-836
Dr. Alexander Kluge
Diagnostische Radiologie, Kerckhoff-Klinik
Benekestraße 2 - 8
61231 Bad Nauheim
Phone: ++ 49/60 32/9 96-24 20
Fax: ++ 49/60 32/9 96-24 33
Email: alexander.kluge@kerckhoff-klinik.de